
COMPLEX MULTIPLICATION: LECTURE 14

Proposition 0.1. Let K be any field.
i) Two elliptic curves over K are isomorphic if and only if they have the same

j-invariant.
ii) For any j0 ∈ K, there exists an elliptic curve with j-invariant j0.

Proof. i) We prove this when charK 6= 2, 3. The transformation relations show that
any two isomorphic elliptic curves have the same j invariant. Conversely uppose E
and E′ have Weierstrass equations:

y2 = x3 +Ax+B

y′2 = x′3 +A′x′ +B′

and they have the same j-invariants. Thus

4A3

4A3 − 27B2
=

4A′3

4A′3 − 27B′2

which yields

A3B′2 = A′3B2

We look for a relation

(x, y) = (u2x′, u3y′)

We divide this up into three cases.
Case 1: A = 0(j = 0). Then B 6= 0 since ∆ 6= 0, and we may take u = (B/B′)1/6.
Case 2: B = 0(j = 1728). For the same reason as before we have A 6= 0 and we

may take u = (A/A′)1/4.
Case 3: AB 6= 0, then A′B′ 6= 0 since ∆′ 6= 0, hence we may take u =

(A/A′)1/4 = (B/B′)1/6.
ii) First assume j0 6= 0, 1728, the equation

y2 + xy == x3 − 36

j0 − 1728
x− 1

j0 − 1728

has ∆ =
j20

j0−1728

3

6= 0 and j = j0. Thus this equation defines a non-singular

curve over K, hence an elliptic curve with the correct j-invariant.
For the remaining cases we take:

j0 = 0, y2 + y = x3, ∆ = −27, j = 0

j0 = 1728, y2 = x3 + x, ∆ = −64, j = 1728

Note that when charK = 2 or 3, these are the only divisors of 1728, so j = 0 for
the above two curves and we note that at least one must have ∆ 6= 0.

�

Corollary 0.2. Let E be an elliptic curve with j0 ∈ K, then E is defined over K,
i.e. there exists a Weierstrass equation for E with coefficients in K.
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Let L/K be an extension of fields and σ ∈ Aut(L/K). For E an elliptic curve over
L, we define Eσ to be the elliptic curve obtained by applying σ to the coefficients of a
Weierstrass equation for E. (This is a more general version of the construction of the
Frobenius twist). One checks that this is independent of the Weierstrass equation
defining E. Since j(E) is a rational function of the coefficients of a Weierstrass
equation for E, we have j(Eσ) = σ(j(E)).

We finish this section by stating the link with our complex analytic constructions
from two weeks ago. We saw that given τ ∈ h, the points of the complex torus can be
identified with the the points of projectivisation of the curve y2 = x3−g2(τ)x−g3(τ)
which we will denote by Eτ . Given what we now know, we can prove the following.

Theorem 0.3. (Complex Uniformisation of Elliptic curves) The association

C/Λτ 7→ Eτ

induces a bijection between the ismorphism classes of complex tori and isomorphism
classes of elliptic curves over C.

Proof. First note that any complex torus is isomorphic to C/Λτ for some τ ∈ h.
The elliptic curve Eτ has j-invariant given by j(τ), since C/Λτ1 and C/Λτ2 are
isomorphic if and only if τ1 and τ2 are conjugate by Γ = SL2(Z), but j is invariant
under the action of Γ, hence this map is well defined.

If C/Λτ1 and C/Λτ2 map to the same elliptic curve, we have j(τ1) = j(τ2), but
j induces a bijection Γ\h, hence τ1 and τ2 are conjugate under Γ.

Finally the map is surjective since for an elliptic curve E, it has j-invariant j0.
But there exists τ ∈ h such that j(τ) = j0 in which case Eτ is ismorphic to E and
Eτ is in the image.

�

0.1. Algebraic interpretation of the group law. The complex torus Eτ is
equipped with a group structure, how is this realised in the projective curve Eτ?

The bijection between C/Λτ and Eτ is given by the map

α 7→ (℘(α), ℘′(α))

Since ℘ and ℘′ have poles at Λ, this bijection takes 0 to the point 0 at ∞ of Eτ .
Now suppose Pi = (℘(αi), ℘

′(αi)) are colinear for i = 1, 2, 3 are colinear, then there
exists A,B,C ∈ C such that

f(z) = A℘(z) +B℘′(z) + C = 0

for z = αi. But this is an elliptic function whose only pole is a triple pole at 0.
Therefore the only zeros of f are the αi. Now consider the integral

1

2πi

∫
C

z
f ′(z)

f(z)
dz

where C is a fundamental parallelogram for the lattice Λ. It follows from the residue
theorem that this is just

∑
w∈CΛ wvw(f). However if we consider the integral on

each leg of the paralleogram, one sees that after cancellation the integral becomes

1

2πi

∫
γ1

f ′(z)

f(z)
dz +

τ

2πi

∫
γ2

z
f ′(z)

f(z)
dz

where γ1 is the path from 0 to 1 and γ2 the path from 0 to τ . Since f ′

f is an

elliptic function, this must lie in Λ. Thus we have α1 + α2 + α3 ∈ Λ, i.e. in the
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group structure on C/Λ, α1 + α2 + α3 = 0. In particular, we can take P2 = 0 and
then P3 is the unique point of intersection of the line through P1 and 0. Then P3

corresponds to −P1 under the group structure of C/Λ.
This gives us a clue how to translate the group structure to the projective curve

Eτ . Suppose we have P,Q ∈ Eτ (C), corresponding to α, β ∈ C/Λτ . The line L
through P and Q intersect at a unique third point R by Bezout’s theorem. And
R corresponds to to −α − β ∈ C/Λτ . Thus by the last remark in the previous
paragraph, we have α+ β corresponds to the third intersection point of the line L′

between R and 0.
The upshot of this approach is that this algorithm allows us to define a group

structure on an elliptic curve over any field.

Geometric definition of group structure: Suppose E is a an elliptic curve defined
by a Weierstrass equation. Let P,Q ∈ E, we wish to define a point P +Q.

Step 1: Draw the line L in P2 which passes through P and Q, (If P = Q, take
L to be the tangent line through E at P ).

Step 2: Bezout’s theorem tells us that L intersects E three times with multiplic-
ity, so that L ∩ E = {P,Q,R}.

Step 3: Let L′ be the line through the point 0 and R.
Step 4: L′ meets E in three point R, 0 and another point which we will define

to be P +Q.

Proposition 0.4. The composition law defined above satisfies the following prop-
erties:

i) P + 0 = P
ii) P +Q = Q+ P
iii) ∀ ∈ E, ∃(−P ) ∈ E such that P + (−P ) = 0
iv) (P + Q) + R = P + (Q + R) This basically says + defines an abelian group

structure on E such that ) is the identity. Moreover we have the following:
v) If E is defined over K then E(K) is a subgroup of E(K) under this group

structure.

Proof. This is proposition 2.2 in Silverman. The only hard part is the associativity
part iv), this can be checked by an explicit computation. It can be proved in a
much simpler way using the Riemann-Roch theorem. �

Exercise: Check the other parts of the above proposition.

In essence this proposition just says that the composition law defines an abelian
group structure on E.

Example 0.5. Consider the elliptic curve E defined by the Weierstrass equation
y2 = x3 + x and let f = y2 − x3 − x. Then consider the two points P = (i, 0), Q =
(−i, 0) ∈ E. The line through these points is given by the set of points

{(x, 0) + (i, 0) : x ∈ C} = {(x, 0) : x ∈ C}

To find the third intersection point, we plug this into the equation for E and
find that the three intersection points are P,Q and (0, 0), hence R = (0, 0). Now
the line between (0, 0) and O is given by

{(0, y) : y ∈ C}
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Plugging this into the equation for E we find that this line intersects E at O and
at (0, 0) with multiplicity 2, hence P +Q = (0, 0).

The explicit computations shows that the maps defined by

+ : E × E → E and − : E → E

are morphisms of algebraic varieties. Morphism if E is defined over K, then so
are this morphisms. This important result means we have successfully transferred
all the complex analytic theorey into a purely algebraic one. To convince yourself
of this result it was worth writing down the explicit polynomials defining the map
− : E 7→ E. You should find that in the case a1, a3 = 0 this map is given by

(x, y) 7→ (x,−y)

which is clearly a morphism of algebraic varieties.
What we have shown can be more succinctly stated in the following way.

Definition 0.6. A group variety over a field K is an algebraic variety V over K
together a K rational point e ∈ V (K) and morphisms of varieties (also defined over
K):

m : V × V → V

i : V → V

which satisfy the usual relations for a group. (m is multiplication, e is the
identity, i is the inverse).

Given any group variety V and a field extension L/K, the maps m, i and the
point e define the structure of a group on the set of L rational points V (L). Thus
we have shown that any elliptic has the natural structure of a group variety where
the identity is the point 0. Moreover (although we cannot prove this) there is only
one possible group structure on an elliptic curve once the point 0 is fixed.

Example 0.7. (The multiplicative group Gm) Let V = A1
K −{0}, this is a variety

since it is the complement in A1
K of the vanishing set of the polynomial x. Let

1 ∈ V (K) = K× be the point e. Then the morphisms m and i given by

m(x, y) = xy, i(x) = x−1

define the structure of a group variety of V .
For any extension L/K, the group of L rational points V (L) can be identified

with L×. The multiplication given by usual multiplication in L. The torsion points
of this group structure over K are just the roots of unity.

0.2. Isogenies of elliptic curves. In this section we study maps from elliptic
curves to each other. These will be maps of algebraic curves, however an elliptic
curve has the extra structure of a marked point 0 so we require our maps to preserve
this point.

Definition 0.8. Let (E1, O1) and (E2, O2) be elliptic curves over K, an isogeny
φ : E1 → E2 is a morphism of algebraic curves such that φ(O1) = O2. A isogeny is
defined over K if it is defined over K as a morphism of algebraic curves.

Two elliptic curves E1 are isogenous if there exists an non-constant isogeny
between them.
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Of course we have seen that E1 and E2 are endowed with algebraically defined
group structures so one would think it should be more natural to consider morh-
pisms which preserve this group structure. However we have the following theorem:

Theorem 0.9. An isogeny of elliptic curves φ : E1 → E2 is compatible with the
group structure on these curves.

Proof. This follows from the Riemann Roch theorem. �

This means that if φ : E1 → E2 is defined over K, then for any extension L/K
the map induces a group homomorphism on E1(L)→ E2(L) on L rational points.

Remark 0.10. Over C we defined a homomorphism of complex tori C/Λ1 → C/Λ2

as holomorphic maps which preserve the point 0 ∈ C. We classified these maps
as being given by multiplication by [α] for some α ∈ C such that αΛ1 ⊂ Λ2. It
can be shown that this map is induced by a map of algebraic curves. Conversely
any isogeny defined as above defines a holomorphic map of Riemann surfaces which
preserve 0. Thus the complex uniformisation theorem can be refined to the state-
ment that the category of complex tori and the category of elliptic curves over C
are equivalent.

In general if we are working over characteristic 0 fields, the theory of complex
tori provides a good source of intuition. Complex tori are very concrete objects
and many of the results below are very evident for this case. However one should
bear in mind that in positive characteristic, some very weird things can happen.

Recall from the theory of algebraic curves, an isogeny φ : E1 → E2 is either
surjective or φ(E1) = 02.

Definition 0.11. An isogeny is separable, resp. inseparable, resp. purely insepa-
rable if the corresponding map of algebraic curves is.

Define the degree of an isogeny to be the degree as a map of algebraic curves,
i.e. the degree of the extension of function fields. By convention we set deg[0] = 0,
then φ = 0 if and only if deg φ = 0.

It is a consequence of the definitions that if φ : E1 → E2, ψ : E2 → E3 are
isogenies, then degψ ◦ φ = degψ deg φ.

We denote by Hom(E1, E2) the group of isogenies from E1 to E2 and End(E)
for the ring of endomorphisms of E. Similarly if E1 and E2 are defined over K,
we define HomK(E1, E2) (resp. End(E)) to be those isogenies which are defined
over K. The structure of abelian group of E naturally induces groups structures on
these sets. In addition End(E) is a ring with multiplication given by composition.

What is a non-trivial example of an isogeny? Well since an elliptic curve has
the structure of an abelian group, or each m ∈ Z there is an algebraically defined
multiplication by m map denoted [m] : E → E.

Example 0.12. Consider the elliptic curve E with Weierstrass equation y2 = x3+x
and let P = (x1, y1) be an arbitrary point on E. Let us compute the isogeny [2] on
E, i.e. we want to find the coordinates of P + P . We have

∂f

∂x
= −3x2 − 1

∂f

∂y
= 2y
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Thus the tangent line through P is the line (2y1, 3x
2
1 + 1)λ+ (x1, y1). Plugging

this into the equation for E we obtain the equation

((3x2
1 + 1)λ+ y1)2 = ((2y1λ+ x1)3 + 2y1λ+ x1)

In order to find the third intersection point, we must solve for λ, but exapnding
out the equation we find that we end up solving:

λ38y3
1 + (12y2

1 − 9x4
1 − 6x2

1 − 1)λ2 = 0

Dividing out by λ2 we obtain

λ =
12y2

1 − 9x4
1 − 6x2

1 − 1

8y2
1

Therefore the third intersection point is(
x1 +

12y2
1 − 9x4

1 − 6x2
1 − 1

4y1
, y1 +

(3x2
1 + 1)(12y2

1 − 9x4
1 − 6x2

1 − 1)

8y2
1

)
and hence 2P is the point

(
x1 +

12y2
1 − 9x4

1 − 6x2
1 − 1

4y1
,−(y1 +

(3x2
1 + 1)(12y2

1 − 9x4
1 − 6x2

1 − 1)

8y2
1

)

)
This works for a general point apart from when y1 = 0, but one can show that it
extends to a morphism defined everywhere. And defines the self isogeny [2] on the
curve E.

This gives the so called [2] multiplication formula, generalising the map t 7→ t2

for the case of K× with its multiplicative group structure. One therefore sees that
the two torsion points are given by y1 = 0 and x = 0, i,−i. Note that when the
base field is Q, these are all algebraic numbers, this follows from the fact that these
formulas only involve polynomials defined over Q. Such formulas exist in general
for all [n].

Proposition 0.13. Let E be an elliptic curve over any field K. Then [m] is a
non-zero isogeny defined over K.

Proof. [ AEC] Proposition 4.2a). �

The ring End(E) is an important invariant of an elliptic curve. Over a field of
characteristic O this ring will usually be Z (it contains it by the above Proposition).
On the other hand if E is defined over a finite field, this ring will always strictly
larger than this.

Definition 0.14. When Z ( End(E) is a strict inclusion, we say E has complex
multiplication or is CM.

Corollary 0.15. The ring End(E) is torsion free as a Z module, and is an integral
domain of characteristic 0.

Proof. The structure of Z module is given by multiplication by [m] ∈ End(E).
Then if [m]φ = 0 we have deg[m] deg φ = 0, hence deg φ = 0 so that φ = 0.

Similarly if φ ◦ ψ = 0 we have deg φ degψ = 0 so that either φ or ψ is 0.
�
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Usually when the only endomorphisms are given by multiplication by [m]. These
maps provided powerful tools for studying elliptic curves.

Definition 0.16. Let E be an elliptic curve, the m torsion subgroup denoted E[m]
is the kernel of [m]. In general if α is an isogeny of elliptic curves, we define E[α]
to be the kernel of α.

It follows from the theory of algebraic curves that E[α] is a finite subgroup
consisting of at most degα elements.

Over charactersitic 0, E[m] will always have m2 elements. This follows from the
Leftschetz principle, the basic of which says that you can embed your field into C,
from which the theory shows that there are at most m2 torsion points. But since
[m] is a an algebraically defined, one can show using the n multiplication formula
that any torsion point is the root of some polynomial hence is algebraic, thus all
torsion points can be defined over some algebraic extension of your base field.


